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DYNAMIC ANALYSIS OF A SIMPLE REENTRY MANEUVER
FOR A LIFTING SATELLITE

By Frederick C. Grant
SUMMARY

The dynamic properties of a simple reentry maneuver are presented.
The maneuver is designed to put the reentry vehicle on a smooth glide
trajectory after a single skip. This maneuver is accomplished by a
properly chosen zero-lift coasting period. The chosen coasting period
satisfies general boundary conditions at the start of the glide. Wing
loadings of 20 and 100 pounds per square foot are considered for reentry
angles up to 6° with a lift-drag-ratio range of 1/2 to 5. Reentry speeds
corresponded to the energy levels of circular orbits at 655,000 and
490,000 feet.

The simple single-skip maneuver was possible over a wide range of
the parameters considered but, naturally enough, was easiest at low 1lift-
drag ratios. The effects of wing loading were generally small. The
higher lift-drag-ratio maneuvers were possible only at the higher reentry
angles. The minimum reentry angle for a successful maneuver at a high
lift-drag ratio was sharply reduced by the lower energy level. The preci-
sion of the maneuver was found to be highly sensitive to the time of the
start of the coast and less so to the time of 1lift restoration. Coasting
distances of less than 1,000 nautical miles were only possible for 1lift-
drag-ratio values under about 2.

Maximum normal accelerations had a roughly parabolic variation with
reentry angle. The highest value calculated was 4.7g at a 1lift-drag

ratio of 5 for a wing loading of 100 pounds per square foot and a reentry
angle of 6°.

INTRODUCTTON

General problems of heating and reentry have received extensive
treatment as, for example, in references 1 to 3. For a lifting satellite,
there is the special question of the mamner in which the available aero-
dynamic forces should be used to achieve transition from flight under



gravitational forces to flight under gravitational and aerodynamic forces.
Some consideration of this problem is given in references 4 and 5 for
‘continuously variable 1lift.

This paper will consider a special case of transition to what is
usually called a glide trajectory. Transition will be made in a simple
maneuver which may be called a lift-coast-1ift maneuver. The vehicle
pulls up at constant 1lift coefficient as it reenters the atmosphere.

At a properly chosen moment past the bottom of the pullup, the 1lift is
suddenly cut to zero and the vehicle coasts essentially under gravity.
After another properly chosen interval the 11ft is restored and the
vehicle is then in & smooth glide. The dynamic properties of this maneu-
ver- will be investigated for a range of initial conditions and vehicle
properties. Most consideration will be given to lift-drag ratio, reentry
angle, and wing loading.

SYMBOLS
Physical variables:
t time
T kinetic energy
W sea-level weighf (mg); gravitational potential of satellite
(W=0 for H = =)
H altitude
ho arbitrary reference altitude
S arbitrary reference area of vehicle
P air density
m mass of vehicle
Vv velocity of vehicle
Vs velocity of gravitational satellite at altitude hg
Physical constants:
g acceleration of gravity at surface of earth, 32.18 ft/sec2

R radius of the earth, 3,957 miles
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Dimensionless variables:

<

st
time parameter, ——
hy

velocity parameter, %L
s

angle of velocity above local horizontal, radians

by g

acceleration of gravity, 5 3
Vs (l + %)

distance from center of earth, Rh+ H
(o)
Shg
1ift parameter, S pCL
Sho
drag parameter, EE_ pCD

angular position along surface of the earth, radians

altitude above surface of the earth, éi
o
‘orbital altitude above surface of the earth, H
o]
h,
arbitrary reference height, R

lift-drag ratio

1lift coefficient

drag coefficient

T+ W

energy constant, >

é‘ mVs

Kepler's constant of ares, (l + g)%L-cos 6
s




F discriminant function

B logarithmic decrement of density with 1, é%(-loge p)
Subscripts:

c 1ift cutoff

R 1lift restoration

1 initial value

A bar over a symbol denotes that the varisble is evaluated at
orbital altitude. A primed symbol denotes a derivative with respect
to T.

Dots over symbols denote derivative with respect to t.
ANALYSIS

Idealized Motion

Consider the motion illustrated schematically in figure 1. The
wave-like curve marked H represents a vehicle with a constant 1ift
coefficient and no drag or thrust moving in the atmosphere. This motion
is the classical phugoid motion. The sum of the kinetic energy T and
gravitational potentlal energy W 1is constant just as in a free falling
motion. The curve H defines the orbital altitude, which is the height
for which a sudden change of velocity to the horizontal direction results
in a constant-altitude path. The value of H depends only on the energy
constant of the motion for a given ratio of 1lift coefficient to wing
loading.

If the 1lift coefficient is allowed to vary, a simple maneuver will
produce the same constant-altitude flight as a sudden change in velocity
direction at H. At the point marked C in figure 1 the 1lift is sud-
denly reduced to zero and the vehicle coasts on an arc of an ellipse.

If C 1is properly chosen, apogee will occur at H and restoration of
the 1lift results in constant-altitude flight from R.

Real Motion

If finite drag is introduced, the pefiodic motion of figure 1 becomes
the familiasr damped skipping oscillation. The altitude H contlinually
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diminishes and the amplitude of the H oscillation diminishes. Eventu-
ally a steady glide results. The tendency of H to oscillate about H
persists through the entire motion.

If zero drag is now assumed only in the coast and the maneuver of
figure 1 1s repeated, the new conditions at R are shown in figure 2.
The variation of H with time now has a finite negative slope beyond R
and the separation of H and H will initially increase. This condi-
tion is unsatisfactory if a smooth glide is desired beyond R, since
conditions favorable to oscillation are obtalned at R.

In order to define precisely the conditions favorable to gliding
motion beyond R, it is only necessary to look at the last part of the
damped skipping oscillation where a smooth glide is known to occur. This
part of the motion, near the earth at low speed in air of constant density,
is indicated in figure 3. The interval H - H may be readily shown to be

H-ﬁ:lﬁ6$—-g (1)

The tendency of H to move toward H persists, as can be seen in fig-
ure 3. Now, however, H 1is dropping as fast as H and there 1s no
oscillation. This property of the gliding motion may be written as

H=F (2)
The straightness of the glide path can be stated by the condition

8 =0 (3)

If conditions (2) and (3) are now transferred to R and satisfied there,
the motion beyond R will be, to the first order in the time, a smooth
glide.

Consider now the maneuver outlined in figure U4 which satisfies the

condition H =H but not the condition 6 = 0. Zero coast drag 1s_still
assumed. After 1lift cutoff at C the vehicle coasts upward past H and
the 1lift is restored when H = H the second time. The condition H =H
occurs at a slightly lower altitude than the condition 6 = 0. For a
neighborhood of R in which 6_and v can be assumed constant, the
increment in altitude between H and H for 8 = O can be approximated
as

-2
A_H_ = AY‘ = _e_ (Ll')
ho VT 2B

where
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B an
In equation (4), & 1is assumed to be so small that & = sin_6 = tan 8
and cos 8§ = 1. For 6 =19, AH =~ 3 feet. The values of 6 are
usually much less than_}o. To a high approximation, then, the condition
8 =0 occurs at H =H for the usual reentry conditions. The modified
boundary conditions at R are thus

H=H

f-F

(5)

For high L/D ratios the coasting drag coefficient will be about
one-half the gliding drag coefficient. For an L/D near unity, corre-
sponding to an angle of attack of about h5°, the coast drag coefficient
may be more like 1/20 of the gliding drag coefficient. If C is chosen

at the same time as for zero coast drag and R 1s chosen again at H = H,

the condition 6 = O will again be nearly satisfied, but the condition
H =H is disturbed and K # H at R.

By using the zero drag trajectories as a basis, 1t is possible to
compute the shift in C required to satisfy conditions of equations (5).
Calculations have shown that the effect of ignoring the finite coast
drag is similar to the effect of a plloting error in the position of C.
The effect of inexact maneuvering is shown subsequently.

RESULTS

Calculations

Results of digital-computer calculations of the lift-coast-1lift
maneuver, idealized by the assumption of zero coast drag, are given in
figures 5 to 8. Details of the calculations are given in the appendix.

The vehicle considered is one with a maximum lift-drag ratio of 5
and a minimum drag coefficient of 0.004. This assumed vehicle thus has

e high L/D capability. The lift-drag relation is assumed to be para-
bolic with the form

Cp = 0.004 + 2.50° (6)
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For L/D values less than 5, the vehicle is presumed to operate on the
high-lift—high-drag side of maximum L/D. In order to span a range of
practical interest, calculations were made for’wing loadings of 20 and
100 pounds per square foot. The C;, Cp, and W/CDS values used are

listed in table I. All calculations were for two initial velocities and
one initial altitude, namely,

V, = 25,900 and 25,800 fps

1

Hy

350,000 ft

The lower V,; value is about 85 feet per second higher than satel-

lite speed at 350,000 feet. Expressed another way, the circular orbit
heights for these energy levels are about 655,000 and 490,000 feet. All
calculations are for the ARDC atmosphere. (See ref. 6.) Reentry angles
were varied to a maximum of 6°.

In figure 5, the variations of OC and 6r with reentry angle -84

are shown for both initial velocities. A single curve is drawn to repre-
sent the entire range of wing loadings of 20 pounds per square foot to
100 pounds per square foot for every case except L/D = 1/2. The devi-
ation from the single curves shown is always less than about 0.05° in
the case of 6y and 0.01° in the case of 8g. The curves for the L/D

values other than 1/2 are all terminated at the lower reentry angles by
vertical lines. These lines mark the reentry angles for which local
satellite speed is attained at the bottom of the pullup. This apparently
arbitrary termination of the curves actually occurs very near the end of
the range of practicality of the maneuver. For slightly lower reentry
angles than those marked by the vertical lines, the velocity is higher
than local satellite speed in the bottom of the pullup and very small

GC values are required. This condition occurs because a certain alti-

tude rise is assured even if the coast is started when 6 = 0°. For
still lower reentry angles and higher speeds at the minimum altitude, the
single-skip maneuver becomes impossible for the kind of maneuver under
consideration. In these cases, even for 8p = OO, the apogee height

is so great that the condition H =H is not satisfied at H = ﬁ, but
at a much higher altitude.

These considerations must be modified for the lower values of L/D.
Figure 5 suggests that the case of L/D = 1/2 1is distinct from the others.
For such a low lift-drag ratio the vehicle motion is more nearly that of
a drag vehicle perturbed by lift forces rather than that of a lifting
vehicle damped by drag forces. The anomalous character of the

L/D = 1/2 curves as compared with the higher L/D curves thus seems
reasonable.




The chief effect of the lower reentry velocity is to reduce sub-
stantially the minimum reentry angles at which the maneuver is possible
at the higher L/D values.

The maximum normal air loads experienced in the maneuver are
summarized in figure 6. These loads occur just before the bottom of the
pullup. All the data for both initial veloclties fall within the indi-
cated bands. Only at the higher angles is there an appreciable differ-
ence in the effects of L/D for the extremes of wing loading. The mean
values of normal air loading are not too different, but the effect of
L/D is rather less for the lightest wing loading than for the heaviest
wing loading at the highest reentry angles. A mean line through the
indicated bands has a roughly parabolic variation with reentry angle.
The detailed results are somewhat dependent on the simple aerodynamic
model chosen. However, the range of the parameter W/CLS has a 5:1 ratio

of high value to low which insures that the bands of figure 6 represent
a wide range of actual aerodynamic characteristics.

In figure 7 the coasting times and corresponding coasting distances
are indicated. The quarter-satellite-period coasting times are Indicated
for the angles at which satellite speed occurs at the minimum altitude.
The basis for this choice is that, when local satellite speed occurs
precisely at 1lift cutoff, the apogee point is 90° ahead of the position
at cutoff. The changes in apogee position with velocity are so rapid
in the neighborhood of satellite speed that these quarter-period values
should be regarded as marking the onset of very long coast periods
approaching full satellite periods for the fast, shallow, high L/D
reentries which necessarily require more than a single skip for reentry.
The distance scale shown on the right matches the quarter-period time
to the quarter-circumference distance. This value is not quite correct
for the lowest L/D values but on the scale of the plot is a negligible
defect. The important feature is that only at L/D values less than
about 2 are coasting distances under 1,000 nautical miles possible. The
small effect of wing loading is also apparent. The effect of the lower
reentry speed is a significant decrease in coasting time and distance,
particularly at the lower reentry angles.

In figure 8 the data defining the altitudes at which the glide
starts are summarized. Two bands are indicated, each for an extreme of
wing loading. Starting at the highest reentry angles, the altitude
bounds are indicated for all the data. At the lower angles the points
corresponding to satellite speed at minimum altitude are indicated.

These points were taken as the upper boundary of the altitude bands in
the lower reentry angle range. The bottom line of each band defines

the data for L/D =1/2. The altitude bands have been arbitrarily cut
off at & reentry angle of 1° and at H equal to 305,000 and 280,000 feet.
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The bands thus cover almost the entire range of single-skip reentries.
In figure 8 only a gradual change of H with reentry angle for a given
L/D and a small effect of initial velocity are shown. It is plain that
the main effect of lower initial velocity is to increase the range of
reentry angle which allows a successful maneuver.

Figure 9 shows the velocities and altitudes calculated at the bottom
of the pullups. Comparison of results for the same wing loading shows
little effect of initial velocity. The changes due to wing loading are
more pronounced, the heavier vehicle having the deeper penetration. On
the basis of the analysis of reference 1, the velocity in the bottom of
the pullup is given by

[l i

]
V = Vle 1 (7)

Figure 9 indicates that formula (7) is a good approximation if L/D = 1/2
is excluded. Cases for which the speed increases in the pullup are not
indicated by formula (7). However, these cases fall within the limits
of accuracy (better than 2 percent) observed in figure 9 for formula (7).

Precision of Maneuver

The effect of incorrect 1lift cutoff is shown in figure 10 which is
a plot of the variatlon of flight-path angle 6 with time. The solid
curve marked B is a perfect maneuver. The curves marked A and C indicate
the start of the motion after 1ift restoration when the coast was started
3.9 seconds early for A and 3.9 seconds late for C. The coast periods
for cases A and C are not indicated since they lie so close to the precise
coasting maneuver B. The continuations of A and C have been cmitted for
clarity, but the calculations show that the A and C phugoid oscillations
damp slowly into curve B and are very close to B beyond 30 minutes. For
all three cases the condition H = H was satisfied at 1lift restoration,

but H # H 4in cases A and C. Case A is a perfect maneuver for the case
of zero gliding drag (fig. 1), since the flight path i1s horizontal at
1lift restoration. The resultant wobble in 6 for case A can be regarded
as the result of ignoring the nonzero gliding drag. Calculations have
shown that, in case C, the amplitude of 6 wobble can be reduced by
restoring the 1lif't somewhat sooner in order to improve satisfaction of

H = H while relaxing the condition H = H. The precision of the maneu-
ver is evidently very sensitive to the time of 1ift cutoff. 1In any
practical case, therefore, some 6 wobble will undoubtedly remain to
be eliminated after 1lift restoration by a pilot or automatic means.

Even the 0.4-second integration interval was too large to prevent wobble
in some of the calculations.
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For a finite coast drag, lift cutoff at the correct time for zero
coast drag and restoration at H = H will introduce an error into the

satisfaction of H = H. A wobble in 6 will thus result. This wobble
may be eliminated by a small shift in cutoff time depending on the amount
of the coasting drag. Similarly, the effect of using an incorrect varia-
tion of density with altitude will disturb the satisfaction of the bound-
ary conditions and a phugoid wobble in 6 will result. The accelerations
assoclated with the 6 variations exhibited in figure 9 are very small.
In a dynamical sense then the maneuvers of figure 9 may all be considered
to be equivalent and the effect of the imprecise maneuvering may be con-
sidered to be negligible.

Since the flight-path angles are small, a constant-attitude reentry
is nearly a constant angle-of-attack maneuver. If the vehicle is required
to hold a constant attitude in the pullup and another constant attitude
in the coast, a close resemblance to the i1dealized maneuver of figure L
is achieved. The finite times required for attitude change, the nonzero
1lift and drag in the coast, and the small variations in 1ift and drag
coefficient during the pullup may all be regarded as perturbations on
the idealized zero-coast-drag maneuver with instantaneous 1ift cutoff
and restoration. Thus, a realistic coasting maneuver can be tailored
to a specific vehicle by starting with the idealized motion and correcting
the 1lift cutoff C and 1lift restoration R by iteration.

CONCLUDING REMARKS

Analysis of one of the simplest reentry maneuvers, the lift-coast-
1ift maneuver, illustrates the boundary conditions which must be satis-
fled at the end of any transition to glide maneuver. For the simple
maneuver, numerical calculations applying the proper boundary conditions
to a simple analytical representation of a reentry vehicle have indicated
the values of the angles for 1lift cutoff and restoration, coasting times,
coasting distances, and accelerations associated with a range of wing
loadings and reentry angles for the simple maneuver.

The simple single-skip maneuver was possible over a wide range of
the parameters considered but, naturally enough, was easiest at low 1llft-
drag ratios. The effects of wing loading were generally small. The
higher lift-drag-ratio maneuvers were possible only at the higher reentry
angles. The minimum reentry angle for a successful maneuver at a high
lift-drag ratio was sharply reduced by the lower energy level. The
precision of the maneuver was found to be highly sensitive to the time
of the start of the coast and less so to the time of 1lift restoration.
Coasting distances of less than 1,000 nautical miles were only possible
for lift-drag-ratio values under about 2.

oV e
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Removal of the idealizations assumed in the analysis slightly shifts
the required lift-cutoff and lift-restoration times. The effect of small
errors 1n performance of a desired 1ift program is to introduce a phugoid
wobble into the final glide-angle variation with time. Although consider-
ation has been given only to constant lift-drag ratio pullups and glides,
it is obvious that a low lift-drag pullup can be matched to a high lift-
drag glide, and vice versa. Such combinations introduce glide stretching
and cutting possibilities.

Langley Research Center,
National Aeronautics and Space Administration,
langley Field, Va., June 24, 1959.
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APPENDIX

DETAILS COF CALCUIATION

Equations of Motion

The equations of motion of the reentry vehicle under the action of
gravity, 1lift, and drag may be written as

mg
p 2 2 : V cos €
c. B - = - L =00 Y
L2sv Hzcose V(e R+H) (Ala)
(l+_)
R
ng .
-Cp g sve . ____;L__§ sin 6 = mV (A1b)

for motion perpendicular to and along the flight path. In terms of
altitude H and position angle ¥ +the motion is

Vsiné =H (Ale)

V cos 6 y

—_— = Ald
R+H v ( )

In equations (Al), R is the radius of the earth and g +the acceleration
of gravity at the earth's surface. The earth and the atmosphere are
considered to be radially symmetric and at rest. The assumed lack of
rotation of the atmosphere is most nearly Jjustified during a reentry in
the polar regions. The coordinates are shown in figure 11. It was

found convenient to nondimensionalize equations (A1) as follows:

The 1ift coefficient and wing loading are contained in the param-
eter N which is defined as

Sh

A = 50 pCy, (A2a)

The drag coefficient and wing loading are combined in the param-
eter & where
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Sh

& = —2 pC A2b
2mpD ( )
The dimensionless velocity is
v =L (A2c)
Vs
where
e
Vg™ = D=— A2d
® "1+D R (A2)

is the square of the gravitational (CL =Cp = 0) satellite speed at the
arbitrary reference altitude h,.

The dimensionless acceleration of gravity is

X = -D—(-l—t_BL (A2e)
(1 + Dn)?

The dimensionless distance from the center of the earth is

_ 1+ Dy

1
5 5 (a2f)
The dimensionless altitude is
H
= = A2
=g (A2g)
The nondimensional equations of motion may now be written as
awe - (x - wv2)cos 6 = 10" (A3s.)
5v2 -~ X sin 6 = v' (A3b)
v sin 6 = ' (A3c)
wv cos 8 = Y (A3d)

Primes denote differentiation with respect to a timelike variable T
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Orbital Altitude

Setting & = 0 1in equations (A3) yields the equations of the phugoid
motion with zero drag and finite 1ift coefficient. The circular motion
at the orbital altitude 1 1is defined by also setting 6 =6' =0 1in
equation (A3). This relationship gives the variation of orbital speed
with altitude as

x|

v = (Ak)

® + A

+

In order to relate orbital altitude to the energy constant, a
dimensionless energy constant I' 1s defined as

T+ W 2 X
N ——— =y -2 =% A
Ze X (45)
= mVg
> M
Substituting equation (A4) into equation (A5) gives
Pr+22%=_X_ (a6)
® ®+ )

Equation (A6) implicitly defines # as a function of TI'. It was solved
by iteration.

Machine Computation

The equations of motion (Al) were integrated by an IBM 704 electronic
data processing machine. Gill's modification of Kutta's method (ref. 7T)
was used. This method is a fourth-order approximation in the integration
interval AT. The arbitrary reference height hO was chosen as

2 X lO5 feet which made AT, chosen as 0.05, equal to about 0.39 second.

After the vehicle passed minimum altitude, the machine recelved
special instructions involving Kepler's law of areas. A nondimensional
form of Kepler's law may be written as

(L+Dp)vecos8 =K (ATa)

The instantaneous values of T' and K fix the gravitational orbit
for a coast which starts at any instant. The angle & at which the
vehicle crosses 17 1in the coast is found with the rewritten law of
Kepler from

\O Vv
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5 K2
in =1 ——>2 (ATb)
- (1 + Dﬁ)eie

The negative sign of the root indicates that the vehicle 1s descending
past 7. The altitude 7 1is found by iteration of equation (A6) in the
form

N T
\r+22%
w

-1 (A8)

When equation (ATb) begins to produce real values of 5, the machine
evaluated the function F which may be written

F=-Vsind + 7 (A%a)

The value of VvV was determined from equation (A6) by using I’ and 7.
The value of 7' is given by

Rt = =I'! AGb
1 N (A9p)
<r+2§?
Gir+\ & [myg_x) ]
X O\ =
with
1“'=-2t‘>fz3 (A9e)

When F changed sign, the 1ift and drag were suppressed and the
coast maneuver was underway. Initially, the machine restored the 1lift
at 1 = 7. Since the cutoff and restoration are both always late by
Aﬁ/2 on the average, the descents were too steep and the altitude too
low at restoration. Slightly better results were obtained by restoring
the 1ift slightly sooner on the condition 1#' = ' which was at too
high an altitude. With infinite precision, of course, the distinction
between the conditions 7 =17 and 7' = 7' must disappear.

The density altitude relation used was that of the ARDC atmosphere.

(See ref. 6.) For convenience in evaluating 7', the tables were faired
by polynomial segments of the following form

log, p = Aj + Bi(q - “1) +‘Ci(n - n1)2’+ Di(q - qi)3 (A10)

The coefflicients Ay, B4y, Cy4, and Dy wused are shown in table II.
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TABLE T

AFRODYNAMIC CHARACTERISTICS OF ASSUMED VEHICLES

[cp = 0.00k + 2.50;%]

% cp c, w/ch for -
W/S = 100 W/S = 20

5 0.040 0.008 12,500 2,500

L .080 .020 5,000 1,000

3 .120 .0kO 2,500 500

2 .192 .096 1,04k 209

1 -39 .396 253 50.5
% 798 1.5% 62.7 12.5
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TABIE IT

COEFFICIENTS OF POLYNOMIAL

lOge p = Ai + Bi('q - T]i) + Cl(q - 'ql)g + Dl(T] - T]i)j

[isns 141

1] M4 Ay By Ci Dy
1|0 -6.0419581 | -6.059732 | -3.3%3864 -9.814176
21 .25 | -7.9186041 | -7.566822 | -1.4o2k112 3.3035072
31 .50 | -10.346343 -9.6486200 | 3.829456 -1.626816
Li .75 | -12.544576 -8.0389200 | T7.790864 |-15.933504
511.00 | -14.316338 -7.131020 -.907168 | ~-11.900672
611.25 | -16.341739 -9.815980 | -2.177088 . 700608
711.50 [ -18.920855 | -10.773160 1.642864 5.514816
811.75 | -21.425297 -8.917700 3.731328 -1.618688
9|2.00 | -23.446806 -7.355540 -.991136 7.926336
10 | 2.25 | -25.223788 -6.364920 4 484928 -2.865088
11 | 2.50 | -26.5T9477 -4 .659660 2.451312 =-1.267072
12 | 2.75 | -27.610983 -3.671580 1.171888 1.6453%12
13 | 3.00 | -28.429927 2. 777240 .583872 -.141632
14 {3.25 | -29.089933 -2.511760 480336 -.107456
15 {3.50 | -29.689531 -2.291740 Lo7552 -.106112
16 [ 3.75 | -30.238652 -2.107860 411648 -.324608
17 | 4.00 | -30.744961 -1.962900 0 0

O\
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Figure 1.~ Skipping motion for zero drag. The symbol C denotes 1lift
cutoff and R, the 1lift restoration.
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Figure 2.- Effect of finite drag at 1ift restoration.
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Figure 3.~ Boundary conditions for the glide.
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Figure 4.- Transfer maneuver with zero coast drag.
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Figure 5.- Variations of angles of cutoff and restoration of 1lift with
reentry angle. H; = 350,000 ft.
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Figure 5.- Concluded.
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Figure 8.- Variation with reentry angle with orbital height at 1lift cut-
off. Hy = 350,000 ft.
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